MySQL优化之如何写出高质量sql语句


当前第2页 返回上一页

反例:

SELECT * FROM system_user user
WHERE Date_ADD(user.loginTime,Interval 7 DAY) >= now();

正例:

SELECT * FROM system_user user
WHERE user.loginTime >=Date_ADD(NOW(),INTERVAL - 7 DAY);

理由:

  • 索引列上使用mysql的内置函数,索引会失效
  • 如果索引列不加内置函数,会走索引查询

15. 使用联合索引时,注意索引列的顺序,一般遵循 最左匹配原则

假设有一个联合索引 (user_id, age),user_id 在前,age 在后。

反例:

select user_id, name, age from user where age = 10;

正例:

# 符合最左匹配原则
select user_id, name, age from user where userid = 1 and age = 21;
# 符合最左匹配原则
select user_id, name, age from user where userid = 1;

理由:

  • 当我们创建一个联合索引的时候,如(k1,k2,k3),相当于创建了(k1)、(k1,k2)和(k1,k2,k3)三个索引,这就是最左匹配原则。
  • 联合索引不满足最左原则,索引一般会失效,但是这个还跟Mysql优化器有关的。

16. 在适当时候,使用覆盖索引。

覆盖索引能够使得你的SQL语句不需要 回表,仅仅访问索引就能够得到所有需要的数据,大大提高了查询效率。

反例:

# like模糊查询,不走索引
select user_id, name, age from user where user_id like '%123%'
# id为主键,那么为普通索引,即覆盖索引。
select user_id, name, age from user where userid like '%123%';

17. 删除冗余和重复索引

反例:

  KEY `idx_userId` (`userId`)
  KEY `idx_userId_age` (`userId`,`age`)

正例:

  KEY `idx_userId_age` (`userId`,`age`)
#  删除 userId 的索引(KEY `idx_userId_age` (`userId`,`age`))
#  因为组合索引(A,B)相当于创建了(A)和(A,B)索引。

理由:

  • 重复的索引需要维护,并且优化器在优化查询的时候也需要逐个地进行考虑,这会影响性能

18. Inner join 、left join、right join,优先使用Inner join,如果是left join,左边表结果尽量小

Inner join 内连接,在两张表进行连接查询时,只保留两张表中完全匹配的结果集

left join 在两张表进行连接查询时,会返回左表所有的行,即使在右表中没有匹配的记录。

right join 在两张表进行连接查询时,会返回右表所有的行,即使在左表中没有匹配的记录。

都满足SQL需求的前提下,优先使用Inner join(内连接),如果要使用left join,左边表数据结果尽量小,如果有条件的尽量放到左边处理。

反例:

select name, age from tab1 t1 left join tab2 t2  on t1.age = t2.age where t1.id = 2;

正例:

select name, age from (select * from tab1 where id = 2) t1 left join tab2 t2 on t1.age = t2.age;

理由:

  • 如果 inner join 是等值连接,或许返回的行数比较少,所以性能相对会好一点
  • 使用了左连接,左边表数据结果尽量小,条件尽量放到左边处理,意味着返回的行数可能比较少

19. 如果插入数据过多,考虑 批量插入

反例:

for(User u :list)
{ INSERT into user(name,age) values(name, age)}

正例:

//一次500批量插入,分批进行
insert into user(name,age) values
<foreach collection="list" item="item" index="index" separator=",">
 (#{item.name},#{item.age})
</foreach>

理由:

  • 批量插入性能好,减少时间损耗。

20. 尽量少用 distinct 关键字

distinct 关键字一般用来过滤重复记录,以返回不重复的记录。在查询一个字段或者很少字段的情况下使用时,给查询带来优化效果。但是在字段很多的时候使用,却会大大降低查询效率。

反例:

# 去重多个字段
SELECT DISTINCT * from  user;

正例:

select DISTINCT name from user;

理由:

  • 带 distinct 的语句 cpu 时间和占用时间都高于不带distinct的语句。
  • 因为当查询很多字段时,如果使用distinct,数据库引擎就会对数据进行比较,过滤掉重复数据,然而这个比较、过滤的过程会占用系统资源,cpu时间。

21. 不要有超过5个以上的表连接

理由:

  • 连表越多,编译的时间和开销也就越大
  • 连表可读性差,把连接表拆开成较小的几个执行,可读性更高

22. 数据量大的时候,如何优化更新语句。

数据量大的时候,需要避免同时修改或删除过多数据,同时会造成cpu利用率过高,从而影响别人对数据库的访问。

反例:

# 一次删除10万或者100万+条数据
delete from user where id < 1000000;
# 或者采用单一循环操作,效率低,时间漫长
for(User user:list){delete from user;}

正例:

# 分批进行删除,如每次500   
delete user where id < 500
delete user where id >= 500 and id < 1000;
...
delete user where id >= 999500 and id < 1000000;

理由:

  • 一次性 删除/更新 太多数据,可能会有 lock wait timeout exceed 的错误,所以建议分批操作。

23. 合理使用 exist 和 in

假设表A表示某企业的员工表,表B表示部门表,查询所有部门的所有员工SQL

反例::

select * from A where deptId in (select deptId from B);

这样写等价于:

先查询部门表B
select deptId from B
再由部门deptId,查询A的员工
select * from A where A.deptId = B.deptId

可以抽象成这样的一个循环语句:

List<> resultSet ;    
for(int i = 0; i < B.length; i ++) {
 for(int j = 0; j < A.length; j ++) {
     if(A[i].id == B[j].id) {
         resultSet.add(A[i]);
            break;          
        }       
     }    
 }

我们也可以用exists实现一样的查询功能

select * from A where exists (select 1 from B where A.deptId = B.deptId);

上述代码等价于:

select * from A,先从A表做循环
select * from B where A.deptId = B.deptId,再从B表做循环.

因为exists查询的理解就是,先执行主查询,获得数据后,再放到子查询中做条件验证,根据验证结果(true或者false),来决定主查询的数据结果是否得以保留。

同理,可以抽象成这样一个循环:

List<> resultSet;    
for(int i = 0; i < A.length; i ++) {
 for(int j = 0; j < B.length; j ++) {
     if(A[i].deptId == B[j].deptId) {
         resultSet.add(A[i]);
            break;          
            }       
        }    
    }

理由:

  • 数据库最费劲的就是跟程序链接释放。假设链接了两次,每次做上百万次的数据集查询,查完就走,这样就只做了两次;相反如果每次单独查询,建立了上百万次链接,申请链接释放反复重复
  • mysql优化原则,就是小表驱动大表,小的数据集驱动大的数据集,从而让性能更优
  • 我们要选择最外层循环小的,也就是,如果B的数据量小于A,适合使用 in,如果B的数据量大于A,即适合选择exist

24. 尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型

反例:

`king_id` varchar(20) NOT NULL COMMENT '123'

正例:

 `king_id` int(11) NOT NULL COMMENT '123'

理由:

  • 相对于数字型字段,字符型会降低查询和连接的性能,并会增加存储开销。

25. 尽量用 union all 替换 union

如果检索结果中不会有重复的记录,推荐 union all 替换 union

反例:

select * from user where userid = 1
union
select * from user where age = 20

正例:

select * from user where userid = 1
union all
select * from user where age = 20

理由:

  • 如果使用union,不管检索结果有没有重复,都会尝试进行合并,然后在输出最终结果前进行排序。
  • 如果已知检索结果没有重复记录,使用 union all 代替 union,这样会提高效率。

26. 如果字段类型是字符串,where时一定用引号括起来,否则将导致索引失效

反例:

select * from user where userid = 1;

正例:

select * from user where userid ='1';

理由:

第一条语句未加单引号就不走索引,这是因为不加单引号时,是字符串跟数字的比较,它们类型不匹配,MySQL会做隐式的类型转换,把它们转换为浮点数再做比较。

总结

到此这篇关于MySQL优化之如何写出高质量sql语句的文章就介绍到这了,更多相关MySQL优化sql语句内容请搜索

更多SQL内容来自木庄网络博客


打赏

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,您说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

分享从这里开始,精彩与您同在

评论

管理员已关闭评论功能...