为了提供数据库层的高可用,需要对数据库使用多主模式进行部署,对于每个数据库来说要保证生成的号段不重复,这就需要利用最开始的思路,再在刚刚的数据库表中增加起始值和步长,比如如果现在是两台MySQL,那么:
mysql_01将生成号段(1,1001],自增的时候序列为1,3,4,5,7…
mysql_02将生成号段(2,1002],自增的时候序列为2,4,6,8,10…
具体实现代码可以参照:tinyid
雪花算法
数据库自增ID模式、数据库多主模式、号段模式三种方式都是基于自增的思想;下面可以简单理解一下雪花算法的思想。
snowflake是twitter开源的分布式ID生成算法,是一种算法,所以它和上面的三种生成分布式ID机制不太一样,它不依赖数据库。
核心思想是:分布式ID固定是一个long型的数字,一个long型占8个字节,也就是64个bit,原始snowflake算法中对于bit的分配如下图:
- 第一个bit位是标识部分,在java中由于long的最高位是符号位,正数是0,负数是1,一般生成的ID为正数,所以固定为0。
- 时间戳部分占41bit,这个是毫秒级的时间,一般实现上不会存储当前的时间戳,而是时间戳的差值(当前时间-固定的开始时间),这样可以使产生的ID从更小值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年
- 工作机器id占10bit,这里比较灵活,比如,可以使用前5位作为数据中心机房标识,后5位作为单机房机器标识,可以部署1024个节点。
- 序列号部分占12bit,支持同一毫秒内同一个节点可以生成4096个ID
根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。它也不依赖数据库。
具体代码实现
package com.yeming.tinyid.application; import static java.lang.System.*; /** * @author yeming.gao * @Description: 雪花算法实现 * <p> * SnowFlake算法用来生成64位的ID,刚好可以用long整型存储,能够用于分布式系统中生产唯一的ID, * 并且生成的ID有大致的顺序。 在这次实现中,生成的64位ID可以分成5个部分: * 0 - 41位时间戳 - 5位数据中心标识 - 5位机器标识 - 12位序列号 * @date 2020/07/28 16:15 */ public class SnowFlake { /** * 起始的时间戳 */ private static final long START_STMP = 1480166465631L; /** * 机器标识占用的位数 */ private static final long MACHINE_BIT = 5; /** * 数据中心占用的位数 */ private static final long DATACENTER_BIT = 5; /** * 序列号占用的位数 */ private static final long SEQUENCE_BIT = 12; /** * 机器标识最大值 */ private static final long MAX_MACHINE_NUM = ~(-1L << MACHINE_BIT); /** * 数据中心最大值 */ private static final long MAX_DATACENTER_NUM = ~(-1L << DATACENTER_BIT); /** * 序列号最大值 */ private static final long MAX_SEQUENCE = ~(-1L << SEQUENCE_BIT); /** * 每一部分向左的位移 */ private static final long MACHINE_LEFT = SEQUENCE_BIT; private static final long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT; private static final long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT; private long datacenterId; //数据中心 private long machineId; //机器标识 private long sequence = 0L; //序列号 private long lastStmp = -1L;//上一次时间戳 private SnowFlake(long datacenterId, long machineId) { if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) { throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0"); } if (machineId > MAX_MACHINE_NUM || machineId < 0) { throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0"); } this.datacenterId = datacenterId; this.machineId = machineId; } /** * 产生下一个ID * * @return long */ private synchronized long nextId() { long currStmp = System.currentTimeMillis(); if (currStmp < lastStmp) { throw new RuntimeException("Clock moved backwards. Refusing to generate id"); } if (currStmp == lastStmp) { //相同毫秒内,序列号自增 sequence = (sequence + 1) & MAX_SEQUENCE; //同一毫秒的序列数已经达到最大 if (sequence == 0L) { currStmp = getNextMill(); } } else { //不同毫秒内,序列号置为0 sequence = 0L; } lastStmp = currStmp; return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分 | datacenterId << DATACENTER_LEFT //数据中心部分 | machineId << MACHINE_LEFT //机器标识部分 | sequence; //序列号部分 } private long getNextMill() { long mill = System.currentTimeMillis(); while (mill <= lastStmp) { mill = System.currentTimeMillis(); } return mill; } public static void main(String[] args) { SnowFlake snowFlake = new SnowFlake(2, 3); //数据中心标识最大值 long maxDatacenterNum = ~(-1L << DATACENTER_BIT); //机器标识最大值 long maxMachineNum = ~(-1L << MACHINE_BIT); //序列号最大值 long maxSequence = ~(-1L << SEQUENCE_BIT); out.println("数据中心标识最大值:" + maxDatacenterNum + ";机器标识最大值:" + maxMachineNum + ";序列号最大值:" + maxSequence); for (int i = 0; i < (1 << 12); i++) { out.println(snowFlake.nextId()); } } }
雪花算法可以参照:
- 百度(uid-generator)
- 美团(Leaf)
以上就是MySQL为id选择合适的数据类型的详细内容,更多关于MySQL id选择合适的数据类型的资料请关注其它相关文章!