美团网技术团队分享的MySQL索引及慢查询优化教程


当前第2页 返回上一页

4.用改造后的语句实验一下,只需要10ms 降低了近200倍!

+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
| id | select_type | table   | type  | possible_keys          | key        | key_len | ref          | rows | Extra    |
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
| 1 | PRIMARY   | cl     | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8    | NULL         | 379 | Using where |
| 1 | PRIMARY   | emp    | eq_ref | PRIMARY             | PRIMARY      | 4    | meituanorg.cl.ref_oid |  1 | Using where |
| 2 | UNION    | cl     | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8    | NULL         | 379 | Using where |
| 2 | UNION    | ec     | eq_ref | PRIMARY,emp_certificate_empid  | PRIMARY      | 4    | meituanorg.cl.ref_oid |  1 |       |
| 2 | UNION    | emp    | eq_ref | PRIMARY             | PRIMARY      | 4    | meituanorg.ec.emp_id |  1 | Using where |
| NULL | UNION RESULT | <union1,2> | ALL  | NULL              | NULL       | NULL  | NULL         | NULL |       |
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+
53 rows in set (0.01 sec)

明确应用场景
举这个例子的目的在于颠覆我们对列的区分度的认知,一般上我们认为区分度越高的列,越容易锁定更少的记录,但在一些特殊的情况下,这种理论是有局限性的

select
  * 
from
  stage_poi sp 
where
  sp.accurate_result=1 
  and (
   sp.sync_status=0 
   or sp.sync_status=2 
   or sp.sync_status=4
  );

0.先看看运行多长时间,951条数据6.22秒,真的很慢

951 rows in set (6.22 sec)

1.先explain,rows达到了361万,type = ALL表明是全表扫描

+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows  | Extra    |
+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
| 1 | SIMPLE   | sp  | ALL | NULL     | NULL | NULL  | NULL | 3613155 | Using where |
+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+

2.所有字段都应用查询返回记录数,因为是单表查询 0已经做过了951条

3.让explain的rows 尽量逼近951

看一下accurate_result = 1的记录数

select count(*),accurate_result from stage_poi group by accurate_result;
+----------+-----------------+
| count(*) | accurate_result |
+----------+-----------------+
|   1023 |       -1 |
| 2114655 |        0 |
|  972815 |        1 |
+----------+-----------------+

我们看到accurate_result这个字段的区分度非常低,整个表只有-1,0,1三个值,加上索引也无法锁定特别少量的数据

再看一下sync_status字段的情况

select count(*),sync_status from stage_poi group by sync_status;
+----------+-------------+
| count(*) | sync_status |
+----------+-------------+
|   3080 |      0 |
| 3085413 |      3 |
+----------+-------------+

同样的区分度也很低,根据理论,也不适合建立索引

问题分析到这,好像得出了这个表无法优化的结论,两个列的区分度都很低,即便加上索引也只能适应这种情况,很难做普遍性的优化,比如当sync_status 0、3分布的很平均,那么锁定记录也是百万级别的

4.找业务方去沟通,看看使用场景。业务方是这么来使用这个SQL语句的,每隔五分钟会扫描符合条件的数据,处理完成后把sync_status这个字段变成1,五分钟符合条件的记录数并不会太多,1000个左右。了解了业务方的使用场景后,优化这个SQL就变得简单了,因为业务方保证了数据的不平衡,如果加上索引可以过滤掉绝大部分不需要的数据

5.根据建立索引规则,使用如下语句建立索引

alter table stage_poi add index idx_acc_status(accurate_result,sync_status);

6.观察预期结果,发现只需要200ms,快了30多倍。

952 rows in set (0.20 sec)

我们再来回顾一下分析问题的过程,单表查询相对来说比较好优化,大部分时候只需要把where条件里面的字段依照规则加上索引就好,如果只是这种“无脑”优化的话,显然一些区分度非常低的列,不应该加索引的列也会被加上索引,这样会对插入、更新性能造成严重的影响,同时也有可能影响其它的查询语句。所以我们第4步调差SQL的使用场景非常关键,我们只有知道这个业务场景,才能更好地辅助我们更好的分析和优化查询语句。

无法优化的语句

select
  c.id,
  c.name,
  c.position,
  c.sex,
  c.phone,
  c.office_phone,
  c.feature_info,
  c.birthday,
  c.creator_id,
  c.is_keyperson,
  c.giveup_reason,
  c.status,
  c.data_source,
  from_unixtime(c.created_time) as created_time,
  from_unixtime(c.last_modified) as last_modified,
  c.last_modified_user_id 
from
  contact c 
inner join
  contact_branch cb 
   on c.id = cb.contact_id 
inner join
  branch_user bu 
   on cb.branch_id = bu.branch_id 
   and bu.status in (
     1,
   2) 
  inner join
   org_emp_info oei 
     on oei.data_id = bu.user_id 
     and oei.node_left >= 2875 
     and oei.node_right <= 10802 
     and oei.org_category = - 1 
  order by
   c.created_time desc limit 0 ,
   10;

还是几个步骤
0.先看语句运行多长时间,10条记录用了13秒,已经不可忍受

10 rows in set (13.06 sec)

1.explain

+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
| id | select_type | table | type  | possible_keys            | key           | key_len | ref           | rows | Extra                    |
+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
| 1 | SIMPLE   | oei  | ref  | idx_category_left_right,idx_data_id | idx_category_left_right | 5    | const          | 8849 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE   | bu  | ref  | PRIMARY,idx_userid_status      | idx_userid_status    | 4    | meituancrm.oei.data_id  |  76 | Using where; Using index           |
| 1 | SIMPLE   | cb  | ref  | idx_branch_id,idx_contact_branch_id | idx_branch_id      | 4    | meituancrm.bu.branch_id |  1 |                       |
| 1 | SIMPLE   | c   | eq_ref | PRIMARY               | PRIMARY         | 108   | meituancrm.cb.contact_id |  1 |                       |
+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+

从执行计划上看,mysql先查org_emp_info表扫描8849记录,再用索引idx_userid_status关联branch_user表,再用索引idx_branch_id关联contact_branch表,最后主键关联contact表。
rows返回的都非常少,看不到有什么异常情况。我们在看一下语句,发现后面有order by + limit组合,会不会是排序量太大搞的?于是我们简化SQL,去掉后面的order by 和 limit,看看到底用了多少记录来排序

select
 count(*)
from
  contact c 
inner join
  contact_branch cb 
   on c.id = cb.contact_id 
inner join
  branch_user bu 
   on cb.branch_id = bu.branch_id 
   and bu.status in (
     1,
   2) 
  inner join
   org_emp_info oei 
     on oei.data_id = bu.user_id 
     and oei.node_left >= 2875 
     and oei.node_right <= 10802 
     and oei.org_category = - 1 

+----------+
| count(*) |
+----------+
|  778878 |
+----------+
1 row in set (5.19 sec)

发现排序之前居然锁定了778878条记录,如果针对70万的结果集排序,将是灾难性的,怪不得这么慢,那我们能不能换个思路,先根据contact的created_time排序,再来join会不会比较快呢?
于是改造成下面的语句,也可以用straight_join来优化

select
c.id,
c.name,
c.position,
c.sex,
c.phone,
c.office_phone,
c.feature_info,
c.birthday,
c.creator_id,
c.is_keyperson,
c.giveup_reason,
c.status,
c.data_source,
from_unixtime(c.created_time) as created_time,
from_unixtime(c.last_modified) as last_modified,
c.last_modified_user_id
from
contact c
where
exists (
select
1
from
contact_branch cb
inner join
branch_user bu
on cb.branch_id = bu.branch_id
and bu.status in (
1,
2)
inner join
org_emp_info oei
on oei.data_id = bu.user_id
and oei.node_left >= 2875
and oei.node_right <= 10802
and oei.org_category = - 1
where
c.id = cb.contact_id
)
order by
c.created_time desc limit 0 ,
10;

验证一下效果 预计在1ms内,提升了13000多倍!

```sql
10 rows in set (0.00 sec)

本以为至此大工告成,但我们在前面的分析中漏了一个细节,先排序再join和先join再排序理论上开销是一样的,为何提升这么多是因为有一个limit!大致执行过程是:mysql先按索引排序得到前10条记录,然后再去join过滤,当发现不够10条的时候,再次去10条,再次join,这显然在内层join过滤的数据非常多的时候,将是灾难的,极端情况,内层一条数据都找不到,mysql还傻乎乎的每次取10条,几乎遍历了这个数据表!
用不同参数的SQL试验下

select
  sql_no_cache  c.id,
  c.name,
  c.position,
  c.sex,
  c.phone,
  c.office_phone,
  c.feature_info,
  c.birthday,
  c.creator_id,
  c.is_keyperson,
  c.giveup_reason,
  c.status,
  c.data_source,
  from_unixtime(c.created_time) as created_time,
  from_unixtime(c.last_modified) as last_modified,
  c.last_modified_user_id  
from
  contact c  
where
  exists (
   select
     1    
   from
     contact_branch cb     
   inner join
     branch_user bu           
      on cb.branch_id = bu.branch_id           
      and bu.status in (
        1,
      2)        
     inner join
      org_emp_info oei              
        on oei.data_id = bu.user_id              
        and oei.node_left >= 2875              
        and oei.node_right <= 2875              
        and oei.org_category = - 1        
     where
      c.id = cb.contact_id      
   )    
  order by
   c.created_time desc limit 0 ,
   10;
Empty set (2 min 18.99 sec)

2 min 18.99 sec!比之前的情况还糟糕很多。由于mysql的nested loop机制,遇到这种情况,基本是无法优化的。这条语句最终也只能交给应用系统去优化自己的逻辑了。
通过这个例子我们可以看到,并不是所有语句都能优化,而往往我们优化时,由于SQL用例回归时落掉一些极端情况,会造成比原来还严重的后果。所以,第一:不要指望所有语句都能通过SQL优化,第二:不要过于自信,只针对具体case来优化,而忽略了更复杂的情况。

慢查询的案例就分析到这儿,以上只是一些比较典型的案例。我们在优化过程中遇到过超过1000行,涉及到16个表join的“垃圾SQL”,也遇到过线上线下数据库差异导致应用直接被慢查询拖死,也遇到过varchar等值比较没有写单引号,还遇到过笛卡尔积查询直接把从库搞死。再多的案例其实也只是一些经验的积累,如果我们熟悉查询优化器、索引的内部原理,那么分析这些案例就变得特别简单了。

写在后面的话
本文以一个慢查询案例引入了MySQL索引原理、优化慢查询的一些方法论;并针对遇到的典型案例做了详细的分析。其实做了这么长时间的语句优化后才发现,任何数据库层面的优化都抵不上应用系统的优化,同样是MySQL,可以用来支撑Google/FaceBook/Taobao应用,但可能连你的个人网站都撑不住。套用最近比较流行的话:“查询容易,优化不易,且写且珍惜!”

更多Mysql内容来自木庄网络博客


标签:Mysql

返回前面的内容

相关阅读 >>

如何使用“navicat for mysql

mysql 存储过程中使用动态sql语句

mysql和相关的timeout详细解析

mysql流程控制语句包括哪些?

mysql关于统计数量的sql查询操作

mysql 协议嗅探是什么

mysql5.7单实例自启动服务配置过程

mysql导入数据时出现乱码怎么办

mysql删除重复数据保留最小的id

mysql如何进行sql优化?

更多相关阅读请进入《mysql》频道 >>


数据库系统概念 第6版
书籍

数据库系统概念 第6版

机械工业出版社

本书主要讲述了数据模型、基于对象的数据库和XML、数据存储和查询、事务管理、体系结构等方面的内容。



打赏

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,您说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

分享从这里开始,精彩与您同在

评论

管理员已关闭评论功能...