4.用改造后的语句实验一下,只需要10ms 降低了近200倍!
+----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+ | 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where | | 1 | PRIMARY | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | Using where | | 2 | UNION | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where | | 2 | UNION | ec | eq_ref | PRIMARY,emp_certificate_empid | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | | | 2 | UNION | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.ec.emp_id | 1 | Using where | | NULL | UNION RESULT | <union1,2> | ALL | NULL | NULL | NULL | NULL | NULL | | +----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+ 53 rows in set (0.01 sec)
明确应用场景
举这个例子的目的在于颠覆我们对列的区分度的认知,一般上我们认为区分度越高的列,越容易锁定更少的记录,但在一些特殊的情况下,这种理论是有局限性的
select * from stage_poi sp where sp.accurate_result=1 and ( sp.sync_status=0 or sp.sync_status=2 or sp.sync_status=4 );
0.先看看运行多长时间,951条数据6.22秒,真的很慢
951 rows in set (6.22 sec)
1.先explain,rows达到了361万,type = ALL表明是全表扫描
+----+-------------+-------+------+---------------+------+---------+------+---------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+ | 1 | SIMPLE | sp | ALL | NULL | NULL | NULL | NULL | 3613155 | Using where | +----+-------------+-------+------+---------------+------+---------+------+---------+-------------+
2.所有字段都应用查询返回记录数,因为是单表查询 0已经做过了951条
3.让explain的rows 尽量逼近951
看一下accurate_result = 1的记录数
select count(*),accurate_result from stage_poi group by accurate_result; +----------+-----------------+ | count(*) | accurate_result | +----------+-----------------+ | 1023 | -1 | | 2114655 | 0 | | 972815 | 1 | +----------+-----------------+
我们看到accurate_result这个字段的区分度非常低,整个表只有-1,0,1三个值,加上索引也无法锁定特别少量的数据
再看一下sync_status字段的情况
select count(*),sync_status from stage_poi group by sync_status; +----------+-------------+ | count(*) | sync_status | +----------+-------------+ | 3080 | 0 | | 3085413 | 3 | +----------+-------------+
同样的区分度也很低,根据理论,也不适合建立索引
问题分析到这,好像得出了这个表无法优化的结论,两个列的区分度都很低,即便加上索引也只能适应这种情况,很难做普遍性的优化,比如当sync_status 0、3分布的很平均,那么锁定记录也是百万级别的
4.找业务方去沟通,看看使用场景。业务方是这么来使用这个SQL语句的,每隔五分钟会扫描符合条件的数据,处理完成后把sync_status这个字段变成1,五分钟符合条件的记录数并不会太多,1000个左右。了解了业务方的使用场景后,优化这个SQL就变得简单了,因为业务方保证了数据的不平衡,如果加上索引可以过滤掉绝大部分不需要的数据
5.根据建立索引规则,使用如下语句建立索引
alter table stage_poi add index idx_acc_status(accurate_result,sync_status);
6.观察预期结果,发现只需要200ms,快了30多倍。
952 rows in set (0.20 sec)
我们再来回顾一下分析问题的过程,单表查询相对来说比较好优化,大部分时候只需要把where条件里面的字段依照规则加上索引就好,如果只是这种“无脑”优化的话,显然一些区分度非常低的列,不应该加索引的列也会被加上索引,这样会对插入、更新性能造成严重的影响,同时也有可能影响其它的查询语句。所以我们第4步调差SQL的使用场景非常关键,我们只有知道这个业务场景,才能更好地辅助我们更好的分析和优化查询语句。
无法优化的语句
select c.id, c.name, c.position, c.sex, c.phone, c.office_phone, c.feature_info, c.birthday, c.creator_id, c.is_keyperson, c.giveup_reason, c.status, c.data_source, from_unixtime(c.created_time) as created_time, from_unixtime(c.last_modified) as last_modified, c.last_modified_user_id from contact c inner join contact_branch cb on c.id = cb.contact_id inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 10802 and oei.org_category = - 1 order by c.created_time desc limit 0 , 10;
还是几个步骤
0.先看语句运行多长时间,10条记录用了13秒,已经不可忍受
10 rows in set (13.06 sec)
1.explain
+----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+ | 1 | SIMPLE | oei | ref | idx_category_left_right,idx_data_id | idx_category_left_right | 5 | const | 8849 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | bu | ref | PRIMARY,idx_userid_status | idx_userid_status | 4 | meituancrm.oei.data_id | 76 | Using where; Using index | | 1 | SIMPLE | cb | ref | idx_branch_id,idx_contact_branch_id | idx_branch_id | 4 | meituancrm.bu.branch_id | 1 | | | 1 | SIMPLE | c | eq_ref | PRIMARY | PRIMARY | 108 | meituancrm.cb.contact_id | 1 | | +----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+
从执行计划上看,mysql先查org_emp_info表扫描8849记录,再用索引idx_userid_status关联branch_user表,再用索引idx_branch_id关联contact_branch表,最后主键关联contact表。
rows返回的都非常少,看不到有什么异常情况。我们在看一下语句,发现后面有order by + limit组合,会不会是排序量太大搞的?于是我们简化SQL,去掉后面的order by 和 limit,看看到底用了多少记录来排序
select count(*) from contact c inner join contact_branch cb on c.id = cb.contact_id inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 10802 and oei.org_category = - 1
+----------+ | count(*) | +----------+ | 778878 | +----------+ 1 row in set (5.19 sec)
发现排序之前居然锁定了778878条记录,如果针对70万的结果集排序,将是灾难性的,怪不得这么慢,那我们能不能换个思路,先根据contact的created_time排序,再来join会不会比较快呢?
于是改造成下面的语句,也可以用straight_join来优化
select c.id, c.name, c.position, c.sex, c.phone, c.office_phone, c.feature_info, c.birthday, c.creator_id, c.is_keyperson, c.giveup_reason, c.status, c.data_source, from_unixtime(c.created_time) as created_time, from_unixtime(c.last_modified) as last_modified, c.last_modified_user_id from contact c where exists ( select 1 from contact_branch cb inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 10802 and oei.org_category = - 1 where c.id = cb.contact_id ) order by c.created_time desc limit 0 , 10;
验证一下效果 预计在1ms内,提升了13000多倍!
```sql 10 rows in set (0.00 sec)
本以为至此大工告成,但我们在前面的分析中漏了一个细节,先排序再join和先join再排序理论上开销是一样的,为何提升这么多是因为有一个limit!大致执行过程是:mysql先按索引排序得到前10条记录,然后再去join过滤,当发现不够10条的时候,再次去10条,再次join,这显然在内层join过滤的数据非常多的时候,将是灾难的,极端情况,内层一条数据都找不到,mysql还傻乎乎的每次取10条,几乎遍历了这个数据表!
用不同参数的SQL试验下
select sql_no_cache c.id, c.name, c.position, c.sex, c.phone, c.office_phone, c.feature_info, c.birthday, c.creator_id, c.is_keyperson, c.giveup_reason, c.status, c.data_source, from_unixtime(c.created_time) as created_time, from_unixtime(c.last_modified) as last_modified, c.last_modified_user_id from contact c where exists ( select 1 from contact_branch cb inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 2875 and oei.org_category = - 1 where c.id = cb.contact_id ) order by c.created_time desc limit 0 , 10;
Empty set (2 min 18.99 sec)
2 min 18.99 sec!比之前的情况还糟糕很多。由于mysql的nested loop机制,遇到这种情况,基本是无法优化的。这条语句最终也只能交给应用系统去优化自己的逻辑了。
通过这个例子我们可以看到,并不是所有语句都能优化,而往往我们优化时,由于SQL用例回归时落掉一些极端情况,会造成比原来还严重的后果。所以,第一:不要指望所有语句都能通过SQL优化,第二:不要过于自信,只针对具体case来优化,而忽略了更复杂的情况。
慢查询的案例就分析到这儿,以上只是一些比较典型的案例。我们在优化过程中遇到过超过1000行,涉及到16个表join的“垃圾SQL”,也遇到过线上线下数据库差异导致应用直接被慢查询拖死,也遇到过varchar等值比较没有写单引号,还遇到过笛卡尔积查询直接把从库搞死。再多的案例其实也只是一些经验的积累,如果我们熟悉查询优化器、索引的内部原理,那么分析这些案例就变得特别简单了。
写在后面的话
本文以一个慢查询案例引入了MySQL索引原理、优化慢查询的一些方法论;并针对遇到的典型案例做了详细的分析。其实做了这么长时间的语句优化后才发现,任何数据库层面的优化都抵不上应用系统的优化,同样是MySQL,可以用来支撑Google/FaceBook/Taobao应用,但可能连你的个人网站都撑不住。套用最近比较流行的话:“查询容易,优化不易,且写且珍惜!”
更多Mysql内容来自木庄网络博客
标签:Mysql
相关阅读 >>
更多相关阅读请进入《mysql》频道 >>

数据库系统概念 第6版
本书主要讲述了数据模型、基于对象的数据库和XML、数据存储和查询、事务管理、体系结构等方面的内容。