sqlacodegen安装操作如下:
# 如果网络通,直接pip安装 pip install sqlacodegen # 如果网络不通,先在网络通的机器上使用pip下载sqlacodegen及期依赖包 pip download sqlacodegen # 上传到真正要安装的机器后再用pip安装,依赖包也会自动安装。版本可能会变化改成自己具体的包名 pip install sqlacodegen-2.1.0-py2.py3-none-any.whl
sqlacodegen生成model操作如下:
# linux应该被安装在/usr/local/bin/sqlacodegen # mysql+pymysql示例 # 可使用--tables指定要生成model的表,不指定时为所有表都生成model # 可使用--outfile指定代码输出到的文件,不指定时输出到stdout # 注意只有当表有主键时sqlacodegen才生成如下的class,不然会使用旧的生成Table()类实例的形式 # 更多说明可使用-h参看 sqlacodegen mysql+pymysql://user:password@localhost/dbname [--tables table_name1,table_name2] [--outfile model.py]
如我的一个示例操作如下,成功为指定表生成model:
2.5 建立会话
增查改删(CRUD)操作需要使用session进行操作
from sqlalchemy.orm import sessionmaker # engine是2.2中创建的连接 Session = sessionmaker(bind=engine) # 创建Session类实例 session = Session()
2.6 增(向users表中插入记录)
# 创建User类实例 ed_user = User(name='ed', fullname='Ed Jones', password='edspassword') # 将该实例插入到users表 session.add(ed_user) # 一次插入多条记录形式 session.add_all( [User(name='wendy', fullname='Wendy Williams', password='foobar'), User(name='mary', fullname='Mary Contrary', password='xxg527'), User(name='fred', fullname='Fred Flinstone', password='blah')] ) # 当前更改只是在session中,需要使用commit确认更改才会写入数据库 session.commit()
2.7 查(查询users表中的记录)
2.7.1 查实现
query将转成select xxx from xxx部分,filter/filter_by将转成where部分,limit/order by/group by分别对应limit()/order_by()/group_by()方法。这句话非常的重要,理解后你将大量减少sql这么写那在sqlalchemy该怎么写的疑惑。
filter_by相当于where部分,外另可用filter。他们的区别是filter_by参数写法类似sql形式,filter参数为python形式。
更多匹配写法见:https://docs.sqlalchemy.org/en/13/orm/tutorial.html#common-filter-operators
our_user = session.query(User).filter_by(name='ed').first() our_user # 比较ed_user与查询到的our_user是否为同一条记录 ed_user is our_user # 只获取指定字段 # 但要注意如果只获取部分字段,那么返回的就是元组而不是对象了 # session.query(User.name).filter_by(name='ed').all() # like查询 # session.query(User).filter(User.name.like("ed%")).all() # 正则查询 # session.query(User).filter(User.name.op("regexp")("^ed")).all() # 统计数量 # session.query(User).filter(User.name.like("ed%")).count() # 调用数据库内置函数 # 以count()为例,都是直接func.func_name()这种格式,func_name与数据库内的写法保持一致 # from sqlalchemy import func # session.query(func.count(User3.name)).one() # 字段名为字符串形式 # column_name = "name" # session.query(User).filter(User3.__table__.columns[column_name].like("ed%")).all() # 获取执行的sql语句 # 获取记录数的方法有all()/one()/first()等几个方法,如果没加这些方法,得到的只是一个将要执行的sql对象,并没真正提交执行 # from sqlalchemy.dialects import mysql # sql_obj = session.query(User).filter_by(name='ed') # sql_command = sql_obj.statement.compile(dialect=mysql.dialect(), compile_kwargs={"literal_binds": True}) # sql_result = sql_obj.all()
另外要注意该链接Common Filter Operators节中形如equals的query.filter(User.name == 'ed'),在真正使用时都得改成session.query(User).filter(User.name == 'ed')形式,不然只后看到报错“NameError: name 'query' is not defined”。
2.7.2 参数传递问题
我们上边的sql直接是our_user = session.query(User).filter_by(name='ed').first()形式,但到实际中时User部分和name=‘ed'这部分是通过参数传过来的,使用参数传递时就要注意以下两个问题。
首先,是参数不要使用引号括起来。比如如下形式是错误的(使用引号),将报错sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) no such column
table_and_column_name = "User" filter = "name='ed'" our_user = session.query(table_and_column_name).filter_by(filter).first()
其次,对于有等号参数需要变换形式。如下去掉了引号,对table_and_column_name没问题,但filter = (name='ed')这种写法在python是不允许的
table_and_column_name = User # 下面这条语句不符合语法 filter = (name='ed') our_user = session.query(table_and_column_name).filter_by(filter).first()
对参数中带等号的这种形式,现在能想到的只有使用filter代替filter_by,即将sql语句中的=号转变为python语句中的==。正确写法如下:
table_and_column_name = User filter = (User.name=='ed') our_user = session.query(table_and_column_name).filter(filter).first()
2.8 改(修改users表中的记录)
# 要修改需要先将记录查出来 mod_user = session.query(User).filter_by(name='ed').first() # 将ed用户的密码修改为modify_paswd mod_user.password = 'modify_passwd' # 确认修改 session.commit() # 但是上边的操作,先查询再修改相当于执行了两条语句,和我们印象中的update不一致 # 可直接使用下边的写法,传给服务端的就是update语句 # session.query(User).filter_by(name='ed').update({User.password: 'modify_passwd'}) # session.commit() # 以同schema的一张表更新另一张表的写法 # 在跨表的update/delete等函数中synchronize_session=False一定要有不然报错 # session.query(User).filter_by(User.name=User1.name).update({User.password: User2.password}, synchronize_session=False) # 以一schema的表更新另一schema的表的写法 # 写法与同一schema的一样,只是定义model时需要使用__table_args__ = {'schema': 'test_database'}等形式指定表对应的schema
2.9 删(删除users表中的记录)
# 要删除需要先将记录查出来 del_user = session.query(User).filter_by(name='ed').first() # 打印一下,确认未删除前记录存在 del_user # 将ed用户记录删除 session.delete(del_user) # 确认删除 session.commit() # 遍历查看,已无ed用户记录 for user in session.query(User): print(user) # 但上边的写法,先查询再删除,相当于给mysql服务端发了两条语句,和我们印象中的delete语句不一致 # 可直接使用下边的写法,传给服务端的就是delete语句 # session.query(User).filter_by(name='ed').first().delete()
2.10 直接执行SQL语句
虽然使用框架规定形式可以在一定程度上解决各数据库的SQL差异,比如获取前两条记录各数据库形式如下。
# mssql/access select top 2 * from table_name; # mysql select * from table_name limit 2; # oracle select * from table_name where rownum <= 2;
但框架存消除各数据库SQL差异的同时会引入各框架CRUD的差异,而开发人员往往就有一定的SQL基础,如果一个框架强制用户只能使用其规定的CRUD形式那反而增加用户的学习成本,这个框架注定不能成为成功的框架。直接地执行SQL而不是使用框架设定的CRUD虽然不是一种被鼓励的操作但也不应被视为一种见不得人的行为。
# 正常的SQL语句 sql = "select * from users" # sqlalchemy使用execute方法直接执行SQL records = session.execute(sql)
更多关于Python3 SQLAlchemy Sqlite3相关教程请查看下面的相关链接
标签:SQLite
相关阅读 >>
python Sqlite3数据库日期与时间常见函数用法分析
更多相关阅读请进入《Sqlite》频道 >>

数据库系统概念 第6版
本书主要讲述了数据模型、基于对象的数据库和XML、数据存储和查询、事务管理、体系结构等方面的内容。