python生成器与迭代器的区别


本文摘自php中文网,作者爱喝马黛茶的安东尼,侵删。

对于list、string、tuple、dict等这些容器对象,使用for循环遍历是很方便的。在后台for语句对容器对象调用iter()函数。iter()是python内置函数。 iter()函数会返回一个定义了next()方法的迭代器对象,它在容器中逐个访问容器内的元素。next()也是python内置函数。在没有后续元素时,next()会抛出一个StopIteration异常,通知for语句循环结束。

迭代器

迭代器是用来帮助我们记录每次迭代访问到的位置,当我们对迭代器使用next()函数的时候,迭代器会向我们返回它所记录位置的下一个位置的数据。实际上,在使用next()函数的时候,调用的就是迭代器对象的_next_方法(Python3中是对象的_next_方法,Python2中是对象的next()方法)。所以,我们要想构造一个迭代器,就要实现它的_next_方法。但这还不够,python要求迭代器本身也是可迭代的,所以我们还要为迭代器实现_iter_方法,而_iter_方法要返回一个迭代器,迭代器自身正是一个迭代器,所以迭代器的_iter_方法返回自身self即可。

一些术语的解释:

1,迭代器协议:对象需要提供next()方法,它要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代。
2,可迭代对象:实现了迭代器协议对象。list、tuple、dict都是Iterable(可迭代对象),但不是Iterator(迭代器对象)。但可以使用内建函数iter() ,把这些都变成Iterable(可迭代器对象)。
3,for item in Iterable 循环的本质就是先通过iter()函数获取可迭代对象Iterable的迭代器,然后对获取到的迭代器不断调用next()方法来获取下一个值并将其赋值给item,当遇到StopIteration的异常后循环结束。

相关推荐:《Python视频教程》

Python自带容器对象案例:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

# 随便定义一个list

listArray=[1,2,3]

# 使用iter()函数

iterName=iter(listArray)

print(iterName)

# 结果如下:是一个列表list的迭代器

# <list_iterator object at 0x0000017B0D984278>

  

print(next(iterName))

print(next(iterName))

print(next(iterName))

print(next(iterName))#没有迭代到下一个元素,直接抛出异常

# 1

# 2

# 3

# Traceback (most recent call last):

# File "Test07.py", line 32, in <module>

# StopIteration

Python中一个实现了_iter_方法和_next_方法的类对象,就是迭代器,如下案例是计算菲波那切数列的案例

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

class Fib(object):

 def __init__(self, max):

  super(Fib, self).__init__()

  self.max = max

  

 def __iter__(self):

  self.a = 0

  self.b = 1

  return self

  

 def __next__(self):

  fib = self.a

  if fib > self.max:

   raise StopIteration

  self.a, self.b = self.b, self.a + self.b

  return fib

  

# 定义一个main函数,循环遍历每一个菲波那切数

def main():

 # 20以内的数

 fib = Fib(20)

 for i in fib:

  print(i)

  

# 测试

if __name__ == '__main__':

 main()

解释说明:

在本类的实现中,定义了一个_iter_(self)方法,这个方法是在for循环遍历时被iter()调用,返回一个迭代器。因为在遍历的时候,是直接调用的python内置函数iter() ,由iter()通过调用_iter_(self)获得对象的迭代器。有了迭代器,就可以逐个遍历元素了。而逐个遍历的时候,也是使用内置的next()函数通过调用对象的_next_(self)方法对迭代器对象进行遍历。所以要实现_iter_(self)和_next_(self)这两个方法。

而且因为实现了_next_(self)方法,所以在实现_iter_(self)的时候,直接返回self就可以。

总结一句话就是:

在循环遍历自定义容器对象时,会使用python内置函数iter()调用遍历对象的_iter_(self)获得一个迭代器,之后再循环对这个迭代器使用next()调用迭代器对象的_next_(self) 。

注意点: _iter_(self)只会被调用一次,而_next_(self)会被调用 n 次,直到出现StopIteration异常。

生成器

作用:

延迟操作。也就是在需要的时候才产生结果,不是立即产生结果。

注意事项:

生成器是只能遍历一次的。
生成器是一类特殊的迭代器。

分类:

第一类:生成器函数:还是使用 def 定义函数,但是,使用yield而不是return语句返回结果。yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次从它离开的地方继续执行。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

# 菲波那切数列

def Fib(max):

 n, a, b = 0, 0, 1

 while n < max:

  yield b

  a, b = b, a + b

  n = n + 1

 return '亲!没有数据了...'

# 调用方法,生成出10个数来

f=Fib(10)

# 使用一个循环捕获最后return 返回的值,保存在异常StopIteration的value中

while True:

 try:

  x=next(f)

  print("f:",x)

 except StopIteration as e:

  print("生成器最后的返回值是:",e.value)

  break

第二类:生成器表达式:类似于列表推导,只不过是把一对大括号[]变换为一对小括号()。但是,生成器表达式是按需产生一个生成器结果对象,要想拿到每一个元素,就需要循环遍历。

如下案例加以说明:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

# 一个列表

xiaoke=[2,3,4,5]

# 生成器generator,类似于list,但是是把[]改为()

gen=(a for a in xiaoke)

for i in gen:

 print(i)

#结果是:

2

3

4

5

# 为什么要使用生成器?因为效率。

# 使用生成器表达式取代列表推导式可以同时节省 cpu 和 内存(RAM)。

# 如果你构造一个列表(list)的目的仅仅是传递给别的函数,

# 比如 传递给tuple()或者set(), 那就用生成器表达式替代吧!

#本案例是直接把列表转化为元组

kk=tuple(a for a in xiaoke)

print(kk)

#结果是:

(2, 3, 4, 5)

# python内置的一些函数,可以识别这是生成器表达式,外面有一对小括号,就是生成器

result1=sum(a for a in range(3))

print(result1)

# 列表推导式

result2=sum([a for a in range(3)])

print(result2)

区别:

生成器能做到迭代器能做的所有事,而且因为自动创建了 iter()和 next()方法,生成器显得特别简洁,而且生成器也是高效的,使用生成器表达式取代列表解析可以同时节省内存。除了创建和保存程序状态的自动方法,当发生器终结时,还会自动抛出 StopIteration 异常。

以上就是python生成器与迭代器的区别的详细内容,更多文章请关注木庄网络博客!!

相关阅读 >>

当遇到pycharm打开卡死,加载慢的解决方法

Python为什么适合人工智能

Python中sep是什么意思

关于Python操作文件方法的总结(收藏)

使用Python和xlwt向excel文件中写入中文

Python引用计数与弱引用的简单了解(附实例)

Python怎么读取excel

r vs. Python数据分析详解

c语言和Python的区别

2018年最火的七个Python图形化gui开发框架

更多相关阅读请进入《Python》频道 >>




打赏

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,您说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

分享从这里开始,精彩与您同在

评论

管理员已关闭评论功能...