python中预处理以及热图的简单介绍


本文摘自php中文网,作者不言,侵删。

本篇文章给大家带来的内容是关于python中预处理以及热图的简单介绍,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

在数据分析当中的东西还是很多的,我在这里只是启发式的介绍一下,了解到这方面的东西之后,使用的时候可以更快的找到解决办法,希望能对大家有所帮助。

这次,依然是使用的sklearn中的iris数据集,对其进行通过热图来展示。

预处理

sklearn.preprocessing是机器学习库中预处理的模块,可以对数据进行标准化处理,正则化等等,根据需求来使用。在这里利用它的标准化方法对数据进行整理。其他的方法可以自行查询。

Standardization标准化:将特征数据的分布调整成标准正态分布,也叫高斯分布,也就是使得数据的均值为0,方差为1。

标准化的原因在于如果有些特征的方差过大,则会主导目标函数从而使参数估计器无法正确地去学习其他特征。

标准化的过程为两步:去均值的中心化(均值变为0);方差的规模化(方差变为1)。

在sklearn.preprocessing中提供了一个scale的方法,可以实现以上功能。

下面举个例子来看一下:

1

2

3

4

5

6

7

8

9

from sklearn import preprocessing

import numpy as np

# 创建一组特征数据,每一行表示一个样本,每一列表示一个特征

xx = np.array([[1., -1., 2.],

              [2., 0., 0.],

              [0., 1., -1.]])

# 将每一列特征标准化为标准正太分布,注意,标准化是针对每一列而言的

xx_scale = preprocessing.scale(xx)

xx_scale

经过对每列数据进行标准化处理之后的结果是:

1

2

3

array([[ 0.        , -1.22474487,  1.33630621],

       [ 1.22474487,  0.        , -0.26726124],

       [-1.22474487,  1.22474487, -1.06904497]])

可以看到,里面的数据发生了变化,数值比较小,也许有人可以一眼看出来,看不出来也没有关系,Python可以很方便的计算他们的一些统计量。

1

2

3

# 测试一下xx_scale每列的均值方差

print('均值:', xx_scale.mean(axis=0))  # axis=0指列,axis=1指行

print('方差:', xx_scale.std(axis=0))

上面已经介绍了标准化的是要将它转换成什么样,结果的确吻合,按列求均值和方差的结果为:

1

2

均值: [0. 0. 0.]

方差: [1. 1. 1.]

当然对于标准化其方差和均值也不是一定要一起进行,比如有时候仅仅希望利于其中一个方法,也是有办法的:

with_mean,with_std.这两个都是布尔型的参数,默认情况下都是true,但也可以自定义成false.即不要均值中心化或者不要方差规模化为1.

热图

关于热图在这里只简单提一下,因为网上关于它的资料已经很多很详细了。

在热图中,数据以矩阵的形式存在,属性范围用颜色的渐变来表示,在这里,使用pcolor绘制热图。

小栗子

还是从导库开始,然后加载数据集,对数据进行处理,然后绘制图像,并对图像做一些标注装饰等等。我习惯在代码中做注释,如果有不明白的,可以留言,我会及时回复。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

# 导入后续所需要的库

from sklearn.datasets import load_iris

from sklearn.preprocessing import scale

import numpy as np

import matplotlib.pyplot as plt

# 加载数据集

data = load_iris()

x = data['data']

y = data['target']

col_names = data['feature_names']

# 数据预处理

# 根据平均值对数据进行缩放

x = scale(x, with_std=False)

x_ = x[1:26,] # 选取其中25组数据

y_labels = range(1, 26)

# 绘制热图

plt.close('all')

plt.figure(1)

fig, ax = plt.subplots()

ax.pcolor(x_, cmap=plt.cm.Greens, edgecolors='k')

ax.set_xticks(np.arange(0, x_.shape[1])+0.5) # 设置横纵坐标

ax.set_yticks(np.arange(0, x_.shape[0])+0.5)

ax.xaxis.tick_top() # x轴提示显示在图形上方

ax.yaxis.tick_left() # y轴提示显示在图形的左侧

ax.set_xticklabels(col_names, minor=False, fontsize=10) # 传递标签数据

ax.set_yticklabels(y_labels, minor=False, fontsize=10)

plt.show()

那么绘制出的图像是什么样子的呢:


上面简单的几步就把这些数据绘制出直观的图像,当然,在真正使用的时候不会这么简单,还需要多扩充知识。

以上就是python中预处理以及热图的简单介绍的详细内容,更多文章请关注木庄网络博客!!

相关阅读 >>

Python异常与错误区别

一文了解Python 3.8的新功能

Python的内存管理机制是什么

Python shell怎么打开

Python实现读取json文件到excel表

Python如何使用unittest测试接口_Python

Python中关于os标准库的使用方法总结

怎么在Python开发界面

Python中insert用法是什么

Python刷题用哪个app

更多相关阅读请进入《Python》频道 >>




打赏

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,您说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

分享从这里开始,精彩与您同在

评论

管理员已关闭评论功能...