python3将python代码打包成exe文件的方法


本文摘自php中文网,作者不言,侵删。

本篇文章给大家分享的内容是python3将python代码打包成exe文件的方法,有需要的朋友可以参考一下

基本配置:

Anaconda 3 4.2.0(python3.5)

注意:

1、代码存放至全英文目录下;

2、电脑管家之类的安全软件暂时关闭(因为发布出来的exe文件属于可执行文件,电脑管家可能会认为发布出来的文件为病毒,自动删除)


具体操作步骤如下:

1、写好的python代码,存放至全英文的目录下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

import keras

from keras.models import Sequential

import numpy as np

import pandas as pd

from keras.layers import Dense

import random

import matplotlib.pyplot as plt

from tensorflow.examples.tutorials.mnist import input_data

from tkinter import filedialog

import tkinter.messagebox #这个是消息框,对话框的关键

file_path = filedialog.askdirectory()

 

mnist = input_data.read_data_sets(file_path, validation_size=0)

 

#随机挑选其中一个手写数字并画图

num = random.randint(1, len(mnist.train.images))

img = mnist.train.images[num]

plt.imshow(img.reshape((28, 28)), cmap='Greys_r')

plt.show()

 

x_train = mnist.train.images

y_train = mnist.train.labels

x_test = mnist.test.images

y_test = mnist.test.labels

 

#reshaping the x_train, y_train, x_test and y_test to conform to MLP input and output dimensions

x_train = np.reshape(x_train, (x_train.shape[0], -1))

x_test = np.reshape(x_test, (x_test.shape[0], -1))

y_train = pd.get_dummies(y_train)

y_test = pd.get_dummies(y_test)

 

#performing one-hot encoding on target variables for train and test

y_train=np.array(y_train)

y_test=np.array(y_test)

#defining model with one input layer[784 neurons], 1 hidden layer[784 neurons] with dropout rate 0.4 and 1 output layer [10 #neurons]

model=Sequential()

model.add(Dense(784, input_dim=784, activation='relu'))

keras.layers.core.Dropout(rate=0.4)

model.add(Dense(10,input_dim=784,activation='softmax'))

# compiling model using adam optimiser and accuracy as metric

model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['accuracy'])

# fitting model and performing validation

model.fit(x_train, y_train, epochs=20, batch_size=200, validation_data=(x_test, y_test))

y_test1 = pd.DataFrame(model.predict(x_test, batch_size=200))

y_pre = y_test1.idxmax(axis = 1)

result = pd.DataFrame({'test': y_test, 'pre': y_pre})

tkinter.messagebox.showinfo('Message', 'Completed!')

2、通过命令行,按照pyinstaller

阅读剩余部分

相关阅读 >>

Python是干什么的

Python set函数是什么

Python操作excel详解

总结Python常用的机器学习库

Python文本编辑器是什么

怎么查看Python是否安装好

Python标准库是什么

Python上手快吗

Python的time和datetime模块详细介绍

Python建立文件怎么弄

更多相关阅读请进入《Python》频道 >>




打赏

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,您说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

分享从这里开始,精彩与您同在

评论

管理员已关闭评论功能...