1.如果表使用自增主键,那么每次插入新的记录,记录就会顺序添加到当前索引节点的后续位置,当一页写满,就会自动开辟一个新的页。 总的来说就是可以提高查询和插入的性能。
2.对InnoDB来说主键索引既存储索引值,又在叶子节点中存储行的数据,也就是说数据文件本身就是按照b+树方式存放数据的。
3.如果没有定义主键,则会使用非空的UNIQUE键做主键 ; 如果没有非空的UNIQUE键,则系统生成一个6字节的rowid做主键;聚簇索引中,N行形成一个页(一页通常大小为16K)。如果碰到不规则数据插入时,为了保持B+树的平衡,会造成频繁的页分裂和页旋转,插入速度比较慢。所以聚簇索引的主键值应尽量是连续增长的值,而不是随机值(不要用随机字符串或UUID)。
4.故对于InnoDB的主键,尽量用整型,而且是递增的整型。这样在存储/查询上都是非常高效的。
MySQL面试题
MySQL数据库千万级数据查询优化方案
limit分页查询越靠后查询越慢。这也让我们得出一个结论:
1、limit语句的查询时间与起始记录的位置成正比。
2、mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用
表使用InnoDB作为存储引擎,id作为自增主键,默认为主键索引
SELECT id FROM test LIMIT 9000000,100;
现在优化的方案有两种,即通过id作为查询条件使用子查询实现和使用join实现;
1、id>=的(子查询)形式实现
select * from test where id >= (select id from test limit 9000000,1)limit 0,100
使用join的形式;
SELECT * FROM test a JOIN (SELECT id FROM test LIMIT 9000000,100) b ON a.id = b.id
这两种优化查询使用时间比较接近,其实两者用的都是一个原理,所以效果也差不多。但个人建议最好使用join,尽量减少子查询的使用。注:目前是千万级别查询,如果将至百万级别,速度会更快。
SELECT * FROM test a JOIN (SELECT id FROM test LIMIT 1000000,100) b ON a.id = b.id
你用过MySQL那些存储引擎
他们都有什么特点和区别?
这是高级开发者面试时经常被问的问题。实际我们在平时的开发中,经常会遇到的。Mysql的存储引擎有这么多种,实际我们在平时用的最多的莫过于InnoDB和MyISAM了。所有如果面试官问道mysql有哪些存储引擎,你只需要告诉这两个常用的就行。
那他们都有什么特点和区别呢?
MyISAM:默认表类型,它是基于传统的ISAM类型,ISAM是Indexed Sequential Access Method (有索引的顺序访问方法) 的缩写,它是存储记录和文件的标准方法。不是事务安全的,而且不支持外键,如果执行大量的select,insert MyISAM比较适合。
InnoDB:支持事务安全的引擎,支持外键、行锁、事务是他的最大特点。如果有大量的update和insert,建议使用InnoDB,特别是针对多个并发和QPS较高的情况。注:在MySQL 5.5之前的版本中,默认的搜索引擎是MyISAM,从MySQL 5.5之后的版本中,默认的搜索引擎变更为InnoDB
MyISAM和InnoDB的区别
1.InnoDB支持事务,MyISAM不支持。对于InnoDB每一条SQL语言都默认封装成事务,自动提交,这样会影响速度,所以最好把多条SQL语言放在begin和commit之间,组成一个事务;
2.InnoDB支持外键,而MyISAM不支持。
3.InnoDB是聚集索引,使用B+Tree作为索引结构,数据文件是和(主键)索引绑在一起的(表数据文件本身就是按B+Tree组织的一个索引结构),必须要有主键,通过主键索引效率很高。MyISAM是非聚集索引,也是使用B+Tree作为索引结构,索引和数据文件是分离的,索引保存的是数据文件的指针。主键索引和辅助索引是独立的。
4.InnoDB不保存表的具体行数,执行select count(*) from table时需要全表扫描。而MyISAM用一个变量保存了整个表的行数,执行上述语句时只需要读出该变量即可,速度很快。
5.Innodb不支持全文索引,而MyISAM支持全文索引,查询效率上MyISAM要高;5.7以后的InnoDB支持全文索引了。
6.InnoDB支持表、行级锁(默认),而MyISAM支持表级锁。;
7.InnoDB表必须有主键(用户没有指定的话会自己找或生产一个主键),而Myisam可以没有。
8.Innodb存储文件有frm、ibd,而Myisam是frm、MYD、MYI。
9.Innodb:frm是表定义文件,ibd是数据文件。
10.Myisam:frm是表定义文件,myd是数据文件,myi是索引文件。
MySQL复杂查询语句的优化
说到复杂SQL优化,最多的是由于多表关联造成了大量的复杂的SQL语句,那我们拿到这种sql到底该怎么优化呢,实际优化也是有套路的,只要按照套路执行就行。复杂SQL优化方案:
1.使用EXPLAIN关键词检查SQL。EXPLAIN可以帮你分析你的查询语句或是表结构的性能瓶颈,就得EXPLAIN 的查询结果还会告诉你你的索引主键被如何利用的,你的数据表是如何被搜索和排序的,是否有全表扫描等;
2.查询的条件尽量使用索引字段,如某一个表有多个条件,就尽量使用复合索引查询,复合索引使用要注意字段的先后顺序。
3.多表关联尽量用join,减少子查询的使用。表的关联字段如果能用主键就用主键,也就是尽可能的使用索引字段。如果关联字段不是索引字段可以根据情况考虑添加索引。
4.尽量使用limit进行分页批量查询,不要一次全部获取。
5.绝对避免select *的使用,尽量select具体需要的字段,减少不必要字段的查询;
6.尽量将or 转换为 union all。
7.尽量避免使用is null或is not null。
8.要注意like的使用,前模糊和全模糊不会走索引。
9.Where后的查询字段尽量减少使用函数,因为函数会造成索引失效。
10.避免使用不等于(!=),因为它不会使用索引。
11.用exists代替in,not exists代替not in,效率会更好;
12.避免使用HAVING子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤,这个处理需要排序,总计等操作。如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销。
13.千万不要 ORDER BY RAND()
以上就是详解MySQL数据库千万级数据查询和存储的详细内容,更多关于MySQL数据库千万级数据查询和存储的资料请关注其它相关文章!