人工智能和人脑有多相似


当前第2页 返回上一页

驱动GPT3和ChatGPT等大型语言模型的更新Transformer架构在某些方面甚至比以前的模型更类似于大脑。

奥赖利说,这些较新的系统正在映现大脑不同区域如何运转,而不仅仅是单个神经元在做什么。但这不是直接映现,而是奥赖利所说的“重新组合”或“混合”。

大脑有不同的区域,比如海马体和皮质,每个区域都有不同的计算形式。奥赖利说,Transformer把这两者融合在了一起。他说:“我认为它就像一种糊状的大脑。这种糊状物被散布到网络的各个部分,并做一些类似海马体的事情和一些类似皮质的事情。”

奥赖利把Transformer之前的通用神经网络比作大脑参与知觉的后皮质。他解释说,Transformer到来后,它增加了一些类似于海马体的功能,他解释说,海马体擅长存储和检索详细事实――例如早餐吃了什么或上班的路线。然而,整个人工智能系统并非有一个单独的海马体,而是像一个巨大的糊状海马体。

普通计算机必须通过内存中的地址或某种标签来查找信息,而神经网络则可以根据提示自动检索信息(你吃了什么早餐?)。这就是奥赖利所说的神经网络的“超能力”。

大脑与神经网络的相似是惊人的,但差异或许是巨大的。奥赖利说,这些模型与人脑的一个不同之处是,它们没有意识的基本要素。他和在这一领域工作的其他人认为,为了拥有意识,神经元必须进行一次有来有回的对话。

他说:“意识的本质是,你对自己大脑的状态有一定的感知。”做到这一点需要双向联结。然而,所有现有模型只有人工智能神经元之间的单向对话。不过,奥赖利正致力于此。他的研究涉及这种双向联结。

并非所有的机器学习尝试都基于神经网络,但最成功的尝试是这样的。这可能不该让人感到意外。在数十亿年的时间里,进化找到了创造智力的最佳方式。克里斯蒂安说,现在我们正在重新发现并改造那些最佳做法。

他说:“事实证明,从生物上获得最多启发的模型是表现最好的,这不是偶然,也不纯是巧合。”

返回前面的内容

相关阅读 >>

tcl发布10系智能门锁产品,搭载指静脉识别技术

智能快速掘进系统国际领先

长城播报 直通冬奥|ai+监控:北京启动人工智能技术巡查文物

实地探访沈阳人工智能计算中心:“北方算谷”如何赋能制造蝶变

算力越高,车越智能?新造车“算力大战”背后的真相是啥?

小米watchcolor2智能手表

生成式智能体——来自npc们的独立宣言

【快讯】加强技术投入、保持技术领先,推动人工智能技术商业化落地

联发科发布pentonic 2000旗舰8k商用智能电视芯片

人工智能为运动员提供实时、专业指导

更多相关阅读请进入《人工智能》频道 >>



打赏

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,您说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

分享从这里开始,精彩与您同在

评论

管理员已关闭评论功能...