统计学bootstrap用于解决什么问题


本文摘自PHP中文网,作者(*-*)浩,侵删。

Bootstrap方法根据给定的原始样本复制观测信息对总体的分布特性进行统计推断,不需要额外的信息。

Efron(1979)认为该方法也属于非参数统计方法。(推荐学习:Bootstrap视频教程)

Bootstrap方法从观察数据出发,不需任何分布假定,针对统计学中的参数估计及假设检验问题,利用Bootstrap方法产生的自举样本计算的某统计量的数据集可以用来反映该统计量的抽样分布,即产生经验分布,这样,即使我们对总体分布不确定,也可以近似估计出该统计量及其置信区间,由此分布可得到不同置信水平相应的分位数――即为通常所谓的临界值,可进一步用于假设测验。

因而,Bootstrap方法能够解决许多传统统计分析方法不能解决的问题。

在Bootstrap的实现过程中,计算机的地位不容忽视(Diaconis et al.,1983),因为Bootstrap涉及到大量的模拟计算。

可以说如果没有计算机,Bootstrap理论只可能是一纸空谈。随着计算机的快速发展,计算速度的提高,计算费时大大降低。

阅读剩余部分

相关阅读 >>

bootstrap框架优点是什么

bootstrap用处大吗

浅谈bootstrap中的panel布局

bootstrap支持手机吗

bootstrap字体图标怎么引用

bootstrap有什么优缺点?

bootstrap与vue区别

bootstrap基本样式介绍

bootstrap怎么给input加图标

解决bootstrap只加载一次 remote 数据的问题

更多相关阅读请进入《bootstrap》频道 >>




打赏

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,您说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

分享从这里开始,精彩与您同在

评论

管理员已关闭评论功能...