本文摘自雷锋网,原文链接:https://www.leiphone.com/category/healthai/aN4Vs08IfhMOZKcE.html,侵删。
在蛋白质-小分子复合体预测方面,“药物设计和酶设计”等领域的项目未来是否加速落地? 当下火热的AIGC技术,能为AI生命科学领域带来多少可能?
在CASP比赛创建者John Moult教授看来,这一比赛从来不是闭门造车,或是学术界的圈地自嗨。
2018年,在第13届CASP比赛中,一个顶着谷歌子公司帽子的参赛选手亮相,其AlphaFold系统以最高的预测准确率击败其他参赛队伍。
2020年,在第14届CASP比赛中,这一公司再次卷入竞技场,凭借AlphaFold二代系统以绝对的优势大获全胜,并在次年将技术成果全部发表于《Nature》和《Science》等顶级期刊。
这便是如今的AI殿堂级公司--DeepMind。
从那以后,人们首次将“人工智能”和“蛋白质结构预测”两个毫不相关的领域联系在一起。而DeepMind背后的谷歌,也凭借CASP大赛织造了一张梦寐以求的医疗商业蓝图。
从业内人士的角度,这或许是意料之中。正如John Moult教授创立CASP比赛的初心,便是希望以此推动计算生物学研究,加速理解细胞构建原理和推进药物发现,最终惠及全人类。
显然,DeepMind已经蹚出了一条可参照的发展路径。
不久前,CASP 15落下帷幕,尽管本届比赛中未见DeepMind身影,但诸多华人团队参赛热情高涨,在蛋白质单体/多体结构预测、蛋白质-蛋白质复合体结构预测、RNA结构预测、蛋白质-小分子配体复合物结构预测等多赛道上夺得桂冠。
不少参赛选手直言,“这是‘后AlphaFold2时代’的首届大型同台竞技,所有选手都获得了业内前所未有的关注。”
在AlphaFold2的冲击之下,蛋白质结构预测是否还能为人们带来新的惊喜?
本届首次新增蛋白质-小分子复合体预测和RNA结构预测两大赛道,是否意味着蛋白质结构预测不再稳占“C位”?
RNA结构预测领域是否会出现如AlphaFold2一般引发革命的技术工具?
从基础研究到应用研究,人们不断讨论着在CASP 15背后行业发展的诸多可能。
近日,由雷峰网GAIR Live&《医健AI掘金志》举办的《生物计算“奥赛”冠军团队论道:当生命科学遇上史诗级AI,何去何从?》线上圆桌论坛落幕。
本次论坛邀请了多位在CASP 15中取得出色成绩的参赛者,由上海智峪生科CEO王晟担任主持,江苏理工学院生物信息与医药工程研究所教授常珊、密歇根大学计算医学和生物信息学系博士后研究员郑伟、浙江工业大学信息工程学院教授张贵军、上海智峪生科技CTO熊鹏参与讨论。
在上篇中,几位嘉宾共同分享了在CASP 15中的参赛经历,以及在AlphaFold2冲击下,蛋白质结构预测赛道该何去何从。
在下篇中,将聚焦本届两大新增赛道:蛋白质-小分子复合体预测和RNA结构预测在应用层面的潜力,探讨当下火热的AIGC技术在AI生命科学领域的可能性。
“全球人工智能与机器人大会”(GAIR)始于2016年雷峰网(公众号:雷峰网)与中国计算机学会(CCF)合作创立的CCF-GAIR大会,旨在打造人工智能浪潮下,连接学术界、产业界、投资界的新平台,而雷峰网“连接三界”的全新定位也在此大会上得以确立。
经过几年发展,GAIR大会已成为行业标杆,是目前为止粤港澳大湾区人工智能领域规模最大、规格最高、跨界最广的学术、工业和投资领域盛会。
GAIR Live作为雷峰网旗下视频直播品牌,旨在输出新鲜、深度、原创的大咖访谈与对话内容,打造辐射产、学、研、投的特色线上平台。
以下是主题论坛的现场内容,雷峰网《医健AI掘金志》做了不改变原意的编辑和整理:
蛋白质-小分子复合体预测赛道的落地之问
王晟:在蛋白质-小分子复合体预测方面,“药物设计和酶设计”等领域的项目未来是否加速落地?
常珊:其实不完全是蛋白质和小分子,刚刚我们探讨的有两个target,受体是RNA。当然我们做算法开发时,会偏向以蛋白质作为受体的蛋白质-小分子的相互作用预测。
但在去年江苏生物信息学专委会上,有学者对靶向RNA的配体小分子设计,以及相应的药物筛选表现出兴趣,给我们很大启发。因此,当CASP15上有这样的题目时,我们就有很大的动力去研究靶向其他受体的小分子算法开发。
而且郑伟博士说得很有道理,如果先靶向RNA,是不是比靶向后续它表达出来蛋白质更有效一些?这也是一个很好的思路。所以我觉得这一块的确值得我们去深入研究相应的算法。我感觉这样的一些工具,相对于蛋白和小分子的预测的工具来说,应该更少一些。印象中,我师兄华中科技大学黄胜友教授团队做了一个类似程序。
在本次CASP15的蛋白质-小分子的赛道设置上,组委会出了大概20多个题目,非常多,但有些场景我感觉跟药物设计不是特别匹配。
比如其中一个题目是,“有一个受体,这个受体有很多结合的小分子,有56个配体, 请预测所有小分子的结合位置。”一般的药物开发体系很少需要预测这么多配体分子。
因为我们平时和制药公司合作比较多,经常合作做一些药物方面的设计和开发,制药公司并不关心你能找出多少小分子,它们真正关心的是,不管你是自己生成,还是从数据库里筛选,只要能够找出一个抑制蛋白质的最合适的小分子就可以。
不过有人在CASP15交流会上透露,可能下一届就会有小分子的筛选问题--从众多小分子中筛选出最合适的配体。这也是目前制药公司都很关心的问题,因此我们现在还要继续完善方法,从而更针对于制药过程中的关键问题。
值得一提的是,自从我们在CASP15比赛上获得了蛋白质-小分子赛道第一名后,能明显感觉到合作企业和科研机构变多了。另外我们也和江苏本地的普美瑞生物科技公司合作开发了一些抑制剂,或PROTAC(Proteolysis-Targeting Chimeras,即蛋白水解靶向嵌合体)分子。目前一些实验结果都非常出乎意料,刚刚筛选出来的配体降解能力就达到了皮摩尔(pM)级的水平,这意味着不需要进行多轮优化就可以去做后续实验。
王晟:常老师说得非常对,CASP比赛中有一个pose(构象)的问题。简单来说,就是给你一个蛋白质,一个小分子,要把它建模到正确的口袋里面且形成合理的相互作用,查看和“标准答案”复合物之间是不是足够得近。
刚才说的 ranking问题,其实包括两层含义,一是构象预测/排序问题-找出最好构象的过程需要产生很多构象然后排序打分-即CASP15关系的复合体结构问题,二是不同分子的排序-即screening问题。在CASP蛋白质预测中,分成了 3D预测和QA预测,小分子结构预测中我个人理解上将二者融合起来一切称为1-构象预测/排序问题。
而制药公司也很关心的是screening问题。就是在众多的小分子中,比如从几千个,几万个,甚至几百万个,几亿个小分子中,筛选出一个或者几个抑制蛋白质活性的小分子。
实际上,我认为这几个问题的底层逻辑是相通的。如果我们能够把Pose问题或者docking、结合位置都做得准确,构象RMSD做到很小,同时能量也计算正确,那么对工业界关心的screening问题,也一定会有很好的推动作用的。张贵军老师对于蛋白-小分子,或者叫做大分子和小分子的对接,复合物建模应用有哪些看法?
张贵军:我们课题组主要做蛋白结构预测的研究,复合物方面研究工作刚刚开始,这也是今后需要努力的一个方向。
实际上,无论是大分子,还是小分子,和靶标蛋白来形成相互作用,最终形成一个复合物,其中一个有效的方法是通过开发打分函数,评估小分子或大分子在口袋里面的舒适度。此外,还有一种比较可靠的方式,即搜索模板,并基于模板信息做比对建模。
小分子这块我不太了解,但是从大分子-大分子相互作用的结果来看,我们可能需要一种新方式。因为它本来就是一体,如果单独对它建模,再进行刚性、柔性对接,这一定不符合实际的生命过程。所以fold和dock的过程应用同步进行。最近我看到有Arne Elofsson课题组的一个工作就是按照上述思想开展工作,精度提升非常高,受此启发,我们课题组也在开展相应工作,我相信未来在蛋白质结构预测、复合物组装方向的下游应用会进展迅速。
王晟:张贵军老师讲了一个非常有意思的点,就是在实际的生物体当中,不管是大分子-小分子,还是大分子-大分子,它们在生命体中的相互作用,并不像传统的计算模拟--先把两个分子的结构搞出来,再把它们对接到一起,而是类似于“共折叠”(co-folding)的模式。
过去的Autodock Vina是怎么做的?蛋白质保持可以刚体模式也可以让口袋去区域保持柔性,建模时候小分子可以和蛋白质侧链一起按照能量下降以及蒙特卡洛方式去调整位置。因此,小分子和口袋区域蛋白质侧链具有一定的自由度,但蛋白质至少在主链上是没有什么自由度的。
相关阅读 >>
5g+AI,预见新未来,科大讯飞助力中国移动重磅发布“5g新通话”产品
苹果、amd、英伟达争抢台积电AI芯片订单,相关芯片将在4月后产出
长安汽车金融全国官方客服电话大全已更新2023(实时/更新中)科技大公司上万人研究AI,为何比不上openAI小团
米哈游戏客服电话已更新2023(已更新完成)担心过于依赖openAI被卡脖子 软件开发商纷纷寻
平安证券客服电话大全已更新2023(实时/更新中)微软专为网络安全专家推出AI聊天机器人
全新骁龙x70调制解调器及射频系统发布,引入全球首个5g AI处理器
更多相关阅读请进入《AI》频道 >>